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Abstract In mathematics education, it is often said that

mathematical statements are necessarily either true or false.

It is also well known that this idea presents a great deal of

difficulty for many students. Many authors as well as

researchers in psychology and mathematics education

emphasize the difference between common sense and

mathematical logic. In this paper, we provide both episte-

mological and didactic arguments to reconsider this point

of view, taking into account the distinction made in logic

between truth and validity on one hand, and syntax and

semantics on the other. In the first part, we provide epis-

temological arguments showing that a central concern for

logicians working with a semantic approach has been

finding an appropriate distance between common sense and

their formal systems. In the second part, we turn from these

epistemological considerations to a didactic analysis.

Supported by empirical results, we argue for the relevance

of the distinction and the relationship between truth and

validity in mathematical proof for mathematics education.

Keywords Truth � Logical validity � Proof � Syntax �
Semantics � Mathematics education � Didactics �
Philosophy of logic and language � Epistemology

1 Introduction

In mathematics education, it is often said that mathematical

statements are necessarily either true or false. It is also well

known that, for many students, it is difficult to deal with

this conception. Many authors as well as researchers in

psychology (Wason & Johnson-Laird 1977; Politzer 1991;

Johnson-Laird 1986; Inglis & Simpson 2006) and

researchers in mathematics education (Radford 1985; Ar-

sac et al. 1992; Legrand 1993; Selden & Selden 1995;

Dubinsky & Yiparaki 2000; Hanna 2000; Hoyles &

Küchemann 2003; Rogalski & Rogalski, 2004) emphasize

the difference between common sense and mathematical

logic. In this paper, we provide both epistemological and

didactic arguments to reconsider this point of view, taking

into account the distinction made in logic between truth

and validity on one hand, and syntax and semantics on the

other. First, we will examine the contribution of some

prominent logicians to the clarification of the distinction

and the relationship between truth and validity, empha-

sizing the articulation between syntax and semantics. In the

second part, we will use two examples to illustrate the

relevance of these epistemological considerations for

didactic analysis.

2 Epistemological considerations

The specific role of epistemology in mathematics education

research is defended by many authors like Arsac (1987),

Artigue (1991), Sierpinska & Lerman (1996), or Dorier

(2000). Dorier (2000) proposes a rather vague sense of

epistemology, linked to any consideration touching the

evolution of knowledge. Here, in our consideration of

reasoning and proof, we use epistemology in a more
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restricted sense. Thus, our goal is to understand in precisely

what sense logic can be considered to be an epistemolog-

ical reference for the didactic analysis of proof and

reasoning in mathematics. This leads us to consider ‘‘La

province de la logique,’’ as analyzed by Engel (1989) in his

consideration of philosophers from Aristotle to Quine, in

particular Frege, Russell, Wittgenstein and Tarski. Reading

these authors makes it clear that the need to determine the

appropriate distance between common sense and logic is at

the very core of their theoretical constructions. Aristotle, to

start at the beginning, considered only propositions1 to be

either true or false, affirming that many other linguistic

entities, such as prayers, orders, etc., are not. Both Frege

and Russell gave a definition of implication that agrees

with common sense when the antecedent is true but not

when the antecedent is false, arguing that they needed to do

so to build a coherent theory for valid inference, and Quine

shared this point of view. Wittgenstein elaborated a

semantic version of propositional calculus that simulta-

neously proclaims the autonomy of the system and its

applicability to ordinary language, and Tarski constructed a

semantic definition of a true statement as both ‘‘materially

adequate’’ and ‘‘formally correct.’’ The main categories

that emerge from these investigations are syntax and

semantics on the one hand, and truth and validity on the

other. Syntax and semantics are clearly related to ‘‘form

and contents’’ (Sinaceur, 1991, 2001), which is a crucial

issue in mathematics education, while truth and validity are

at the very core of the process of mathematical proof.

Obviously, syntax and semantic are more general catego-

ries; however, as we shall see, syntactic and semantic

methods concern both truth and validity.

2.1 Truth and validity in Aristotle’ syllogism theory

It is well known that formal logic begins with Aristotle’

syllogism theory as presented in his Prior Analytics

(Aristote, 1992). As Lukasiewicz put it, for Aristotle, pure

logic is what remains when material has been taken away

(Lukasiewicz, 1951, 1972, p. 22). To build his system,

Aristotle, in On Interpretation (Aristote, 1989), extracted

formal statements from ordinary-language sentences; he

gave a standard form to quantified statements and empha-

sized the distinction between contradiction (which oppose

two necessarily different truth values, e.g., every A is B/

some As are not Bs) and contrariety (a more radical

opposition that offers the possibility of both statements

being false, e.g., every A is B/no A is B). Then, in the Prior

Analytics, Aristotle offers a precise definition of a syllo-

gism: namely, a conditional statement with two premises

and a conclusion (all quantified statements) that respect a

set of precise constitutive rules, like, for example: ‘‘If some

As are B and every B is C, then some As are C’’ (1), or ‘‘If

every A is B and some Bs are C, then some As are C’’ (2).

Following this definition, Aristotle then classifies these

syllogisms into two categories: those that lead from truth to

truth, whatever be the interpretation of the terms A, B and

C as in (1); and those which might have true premises and a

false conclusion in some interpretation as in (2). To do this,

Aristotle first claims that some syllogisms are obviously

valid, meaning that everybody would agree with the fact

that they preserve truth. The most famous is the first syl-

logism of the first figure2: ‘‘If every A is B and every B is C,

then every A is C.’’ Then, he gives some conversion rules

that preserve validity such as replacing ‘‘Some As are B’’

by ‘‘Some Bs are A,’’ which are ‘‘obviously’’ equivalent

(synonymous). He is then able to prove, by syntactic

means, that some syllogisms are logically valid (are truth-

preserving). Moreover, for every syllogism that can be

constructed in his system, he is able either to prove syn-

tactically that it is valid, or to give a counterexample

showing it not to be valid. By proceeding in this manner,

Aristotle is simultaneously using both syntactic and

semantic processes. As a consequence, he emphasized the

distinction between truth in an interpretation and logical

validity. Aristotle qualifies a truth as ‘‘necessary’’ when it

is the conclusion of a valid syllogism whose premises are

true, and opposes it to a de facto truth, or a truth obtained

merely as a consequence of another truth. Even if Aris-

totle’s system is clearly not sufficient for the needs of

mathematical reasoning (in particular, he did not explicitly

introduce logical connectors like implication), he never-

theless developed fundamental logical concepts that remain

essential in modern logic.3 Thus, he is acknowledged as a

precursor by many authors, who, like Largeault (1972),

consider that Aristotle’s use of both semantic interpretation

and formal derivation attests of his ‘‘genial lucidity.’’

2.2 The revival of formal logic in the late nineteenth

century

Although logic has always been at the center of philoso-

phers’ and scientists’ inquiries, it experienced spectacular

developments only at the very end of the nineteenth and the

1 In logic, a proposition is a linguistic entity that is either true or

false.

2 A syllogism has two premises and a conclusion; each premise is a

proposition with a subject term and a predicate term (an attribute); the

middle term occurs twice in the premises. It does not occur in the

conclusion. Its position determines four figures. For example, in the

first figure, the middle term is once the predicate, once the subject; in

the second figure, it is twice the predicate.
3 A very clear presentation of Aristotle’s Syllogistic can be found in

Lukasiewicz (1951), who presents this text as an introduction to

formal logic.
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beginning of the twentieth century. Frege and Russell are

two prominent figures in this revival.

The revolution introduced by Frege consisted of the

elaboration of a symbolic language, enriched using math-

ematical language, to translate logical operations

(connectors and quantifiers). In his paper (Frege 1882),

‘‘Uber die Wissenschaftliche Berechtigung einer Beg-

riffschrift,’’4 Frege exposed his project of renewing logic to

attain perfect rigor in mathematical reasoning. Such rigor

could not be achieved, according to him, using ordinary

language. Frege admitted that for ordinary contexts, our

experience could be sufficient to avoid many errors, but

that this is not the case for more complex domains, such as

mathematics. Indeed, rules of logic expressed in ordinary

language are insufficient to ensure that the chain of infer-

ence does not contain any gaps. This reasoning is supported

by some historical incorrect proofs such as those of Cau-

chy, which ultimately led to the distinction between

uniform convergence and convergence (Durand-Guerrier

and Arsac, 2003, 2005). Frege’s ideography is capable of

revealing the deep structure of mathematical statements, by

formalizing the distinction between singular and general

statements and by showing the scope of this generality in

relation to connectors like negation and implication. This is

particularly important, as it allows one to resolve ambi-

guities that might be encountered in ordinary language.

This is the case in French, for example, in statements with

the logical form ‘‘All As are not B.’’ Such a statement

might be understood as ‘‘it is not the case that all As are B,’’

or to put in a different way ‘‘there exist some As that are

not B’’ (1). However, it could also be understood as ‘‘None

of As is B’’ (2). Although in French, the right interpretation

is given by (1), in some contexts, French-speakers can

legitimately make the second interpretation. This semantic

ambiguity is well known to linguists dealing with French

language (Fuchs, 1996) and we find it also in mathematical

classroom in Tunisia (Durand-Guerrier & Ben Kilani 2004)

and with French teachers in mathematics. Thus, for

example, the sentence ‘‘Toutes les boules ne sont pas

rouges’’ (All the balls are not red), leads to two different

interpretations ‘‘Il y a au moins une boule qui n’est pas

rouge’’ (At least one ball is not red) (1), or ‘‘Aucune boule

n’est rouge’’ (No ball is red) (2). Expressing the logical

structure of the statement in predicate calculus requires

choosing between the two interpretations, and thus dis-

ambiguating the signification. It is significant that a literal

translation of the French sentence into predicate calculus

provides the second interpretation, as the negation is within

the scope of the universal quantifier. To get the first

interpretation, it is necessary to extract the negation from

the sentence and to put it at very beginning or to change the

universal quantifier into an existential quantifier. Frege

discusses these difficult questions in some detail, but they

are rarely taken into account in the mathematics classroom,

at least in France and in Tunisia. Even more significant

difficulties arise when both implication and negation are

involved in quantified statements. Selden & Selden (1995)

show that undergraduate students in the United States

experience many difficulties when asked to translate

mathematical statements given in ordinary language into

first-order predicate logic.

One important aspect of Frege’s contribution is his

definition of implication and negation (Frege 1918a, b,

1923, 1971). He defined the relationship of implication

‘‘if B, then A’’ as equivalent to ‘‘not (not A and B),’’

which is false only in the case where the antecedent is

true and the consequent false. Frege rejected the objec-

tions to this definition by arguing not only for the need

for logic to liberate itself from the use of ordinary lan-

guage but also the necessity of establishing a certain

distance from the ordinary use of language. Thus, his

ideography presents itself as a purified version of ordinary

language, an approach in continuity with the Aristotelian

perspective. Nevertheless, unlike Aristotle, Frege incor-

porated logical connectors and did not use vernacular

language at all. He also insisted on the fact that this

definition of implication was necessary to be clear about

the cases where a conditional statement is true and so to

clarify the use of a true conditional statement in an

inference, such as ‘‘A; and if A, then B; hence B.’’ The

definition given by Frege is similar to ‘‘material impli-

cation’’ as defined by Russell (1903), who insisted on the

fact that, although it looks unnatural, there must be a

logical relation between two propositions of the sort that

either the antecedent is false or the consequent is true.

Russell claimed that the natural concept of implication is

a generalized conditional that asserts that every material

implication (propositional conditional) of a certain class is

true.5 However, quantified logic is an extension of prop-

ositional logic, which is at the very heart of deductive

reasoning. A greater difficulty arises from the fact that

propositional logic is developed as an axiomatic system

according to a syntactic perspective (logical theorems are

derived from axioms by the application of inference rules

in the system itself), while quantified logic as defined by

Frege and Russell clearly needs a semantic perspective to

take into account interpretation and issues concerning the

domain of quantification. Wittgenstein, by elaborating a

semantic version of propositional logic, opened up a new

4 English translation ‘‘On the scientific justification of a conceptual

notation’’ in Frege 1972, pp. 83–90.

5 The question of knowing which is the right notion of implication is

discussed in (Durand-Guerrier 2003).
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path to a solution, which was ultimately realized by

Tarski with his semantic definition of the concept of truth.

2.3 A semantic perspective on propositional logic

A disciple of Russell and Frege, Wittgenstein, proposed a

formal system constructed using a semantic perspective in

his first treatise, entitled Tractatus logico philosophicus

(Wittgenstein, 1921, 1922).6 His main purpose here was to

formalize the notion of a proposition, i.e., a linguistic entity

that is either true or false. The components of the system

are ‘‘propositional variables,’’ meaning symbols or vari-

ables that could be interpreted as propositions in some

particular piece of discourse. Two principles govern the

system. First, the principle of bivalence, proposing that

there are exactly two truth values in the system and, sec-

ond, the principle of extension, which asserts that the truth-

value of a complex sentence is entirely determined by the

truth values of its elementary components. Truth-tables are

introduced to define all the possibilities of truth distribution

in the overall system. For two variables, for example, there

are sixteen possible combinations. According to Granger,

1990, p. 4, ‘‘these do not refer to any object of our thought,

but evoke systems of possibility concerning the truth or

falsity of the propositions that are thereby connected

together.’’ (‘‘elles ne renvoient à aucun objet de pensée,

mais évoquent des systèmes de possibilités pour la vérité et

la fausseté des propositions qu’elles connectent.’’). Of

course, among these possibilities, we find all the classical

logical connectors, such as conjunction, implication,

equivalence, and disjunction. The formal propositions in

the system are built up in a recursive manner from the

propositional variables and the connectors so that it is

possible to build their truth-tables, which indicates the

truth-value of a complex proposition for each distribution

based on the truth-value on its elementary components.

Among these formal propositions, some take the truth-

value ‘‘true’’ for every distribution: they are named tau-

tology and play an essential role in the system: tautologies

support deduction, while interpretation of formal proposi-

tions that are neither tautologies, nor contradictions7

‘‘speak about facts in the world, to describe the state of

things,’’ and consequently, it is not the role of logic to

decide on the truth of the particular interpretations (this

point was already emphasized by Frege). The main role of

logic is to establish which inferences are valid. Wittgen-

stein shows how tautologies support deduction in the case

of Modus Ponens saying that as we can show that

‘‘((p ) q) ^ p) ) q’’ is a tautology, it is clear that ‘‘q’’

follows of ‘‘(p ) q) ^ p.’’ The important novelty in this

system is the fact that there is no use of a rule for the

conclusion, as was the case in Frege’s and Russell’s sys-

tems. Indeed, the fact that a formal statement is or is not a

tautology (or a contradiction) depends only on its structure.

In the case of complex propositions, the truth-table method

offers a decisive mean to determine this. As a consequence,

proof in logic, and the logical proof of a mathematical

statement are two different things. As most of the classical

inference rules can be associated with a tautology, Witt-

genstein’s system may be considered as a ‘‘theory of valid

inference.’’ This was widely popularized by Quine, who

claimed that this only was implication (Quine 1950). Thus,

what emerges from the Tractatus is an autonomous formal

system aimed at providing an adequate description of the

facts in the world and the state of things. In this treatise on

propositional calculus, Wittgenstein brilliantly overcame

this tension between formalism and a description of the

world,8 but when it comes to quantified logic, this question

was scarcely explored. Some years later, Tarski, in a

famous paper first published in Polish in 1933 did for

quantified logic what Wittgenstein had achieved for prop-

ositional logic.

2.4 A definition of truth materially adequate

and formally correct

In his 1933 paper, entitled in English ‘‘The concept of truth

in languages of deductive sciences,’’ Tarski indicated that

his purpose was to construct a definition of the expression

‘‘true proposition’’ that would be materially adequate and

formally correct (Tarski 1933a, b, 1972, 1983, p. 159).

Although Tarski seems not to have read Wittgenstein, it

appears that he knew about the semantic perspective in

propositional calculus. Tarski’s project is clearly inscribed

in a perspective of bridging formal systems and reality. He

emphasized this point once again in a paper from 1944,

where he refers clearly to the classical Aristotelian con-

ception of truth that could be expressed in modern

language under the following definition: ‘‘the truth of a

proposition lies in its agreement (or correspondence) with

reality; or a proposition is true if it designates an existent

state of things (Tarski 1944a, b, 1974, pp. 270–271).’’

To elaborate a recursive construction of truth for prop-

ositions, Tarski introduced the more general concept of

‘‘satisfaction of a propositional function (a predicate) by

such or such objects,’’ taking into account the fact that

‘‘complex propositions are not aggregates of propositions,

but obtained from propositional functions’’ (Tarski 1933a,

b, 1972, 1983, p. 193). This definition highlights the fact
6 There are obviously many others philosophical matters raised in

this treatise. Here, I propose a reading based on a purely didactic

perspective (Durand-Guerrier 2006).
7 A contradiction take the truth-value ‘‘false’’ for every distribution. 8 This is developed in (Durand-Guerrier 2006).
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that to state the truth of a propositional function, it is

necessary to work in a given domain of reality in which

there are existent states of things about which we are able

to say something concerning their truth. For Tarski, a

domain of reality might equally well be material reality,

mathematical theory or a local theory elaborated pour les

besoins de la cause,9 as we will see in the next paragraph.

It is then possible to construct recursively the criteria for

the satisfaction of a complex formula of predicate calculus

in any structure on a nonempty domain using an interpre-

tation for each letter of the formula. Doing this, it is

possible to define the notion of ‘‘model for a formula,’’

which constitutes an interpretative structure (for example, a

mathematical theory) in which the formula is satisfied by

every relevant sequence of objects. This allows Tarski to

define the fundamental notion of ‘‘logical consequence in a

semantic point of view’’: a formula G follows logically

from a formula F if and only if every model for F is a

model for G (Tarski 1936c, 1972). This then means that the

formula ‘‘F ) G’’ is true for every interpretation of F and

G in every nonempty interpretative structure (Quine 1950).

For example, in this semantic context, ‘‘Q(x)’’ is a logical

consequence of ‘‘P(x) ^ (P(x) ) Q(x))’’. Note that this is

an extension of the corresponding result by Wittgenstein, in

the sense that ‘‘Q(x),’’ and ‘‘P(x) ^ (P(x) ) Q(x))’’ are not

propositional variables, but propositional functions (pred-

icates), so that it is not possible to use the truth-tables

directly [in predicate calculus, only closed formulae (for-

mulae without free variables) can be considered as

propositional variables].

A clear presentation of this notion of logical conse-

quence from a semantic perspective can be found in (Quine

1950). This author, in the continuity of his predecessors,

developed logical tools that allowed the formalization of

propositions that remained as close as possible to ordinary

language and natural modes of reasoning, although without

hesitating to establish a distance from it if necessary. He

thereby succeeded in providing valuable tools for the for-

mal analysis of language, reference and inference.

2.5 Semantics and syntax: a model theoretic point

of view

The model-theoretic approach was developed by Tarski in

his 1936 book Introduction to logic and to the methodology

of the deductive sciences (Tarski 1936a, b, 1969). He

named his method the ‘‘Methodology of the deductive

sciences,’’ and then presented it using an example (the

congruence of segments). Given a deductive theory, it is

possible to consider an axiomatic system as a formal

language (without any defined objects), and then to rein-

terpret the system using other interpretations. Such

interpretations in which the axioms are true are named

models of the axiomatic system. Of course, the initial

theory is among the models of the system. Tarski (1936a, b,

1969) established the following important results:

‘‘Every theorem of a given deductive theory is sat-

isfied by any model of the axiomatic system of this

theory; moreover at every theorem one can associate

a general logical statement logically provable that

establishes that the considered theorem is satisfied in

any model of this type (…).’’ (Deduction theorem).

‘‘All the theorems proved from a given axiomatic

system remain valid for any interpretation of the

system.’’

These two fundamental theorems illustrate the rela-

tionship between semantics and syntax and lead to a very

important method of proving that a statement is not a

logical consequence of the axiom of a theory. This kind of

proof, called ‘‘proof by interpretation,’’ consists of pro-

viding a model of the theory that is not a model of the

formula associated with the statement in question.

Doing this, Tarski clarifies the distinction between truth

in an interpretation, and truth as a logical consequence of

an axiomatic system, which recovers Aristotle’s original

distinction between necessary and de facto truth.10 As Si-

naceur (1991) has demonstrated, this leads to many results

in advanced mathematics. However, this method is also

fruitful in more elementary domains as we will show now,

to illustrate this methodology. The example is taken from

the famous international mathematical competition for

students called the Math Kangaroo (in France, le Kan-

gourou des Mathématiques).11 The item that we present

here is from the French 1994 competition for eighth-grade

students (14 years old). Below is the text of the last item in

the competition:

Les gens malins répondront tous juste à cette question;

All clever people will give the right answer to this question;

Ceux qui répondent au hasard ne sont pas malins.

Those who answer by guessing are not clever.

Alors il est certain que :

Then it is certain that:

A. Tous ceux qui répondent au hasard répondent faux.

All those who answer by guessing will give a wrong answer.

B. Ceux qui sont malins répondent au hasard.

Those who are clever will answer by guessing.

9 In French, this expression means that you do something in order to

solve a specific problem.

10 see Sect. 2.1.
11 http://www.mathkang.org/concours/kangsansf.html.
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Table a continued

C. Ceux qui répondent juste sont malins.

Those who give the right answer are clever.

D. Ceux qui s’abstiennent à cette question sont malins.

Those who don’t answer this question are clever.

E. Les réponses A, B, C et D sont fausses.

The answers A, B, C and D are false.

To answer the question, students had to choose one of

the five responses. Reading the answer proposed by the

authors—the correct answer is E—raises some doubts. Are

we really sure that the sentences A, B, C and D are false?

The question is how do you determine the truth-values of

the sentence A, B, C and D? A priori, the questions of

certainty are related to questions of necessity, and even, in

this case, of logical validity. To discuss this, we will use

Tarski’s methodology of the deductive sciences, as the

structure of this item is appropriate for constructing a mini

deductive theory. Indeed, we have a domain of discourse:

the population of all those who answer the Kangaroo

question in 1994 in France, and two axioms: all clever

people will give the right answer to this question (A1);

those who answer by guessing are not clever (A2). More-

over, the question refers predominantly to semantic issues.

First, it concerns objective certainty (‘‘It is certain that’’)

rather than subjective certainty (‘‘I am certain that’’), so

that the answer is expected to be formulated within the

same framework as the question. Within this framework,

however, there are certain ambiguous references, because,

on one hand, the one who answers contributes to the def-

inition of the domain of discourse, and on the other hand

the fifth sentence says something about the truth of the four

other sentences.

To construct an axiomatic system in predicate calculus,

which we will name T, we need to define relevant predi-

cates. We will associate the following states; ‘‘être malin

(to be clever),’’ ‘‘répondre juste (to answer correctly),’’

‘‘répondre faux (to answer incorrectly),’’ ‘‘s’abstenir (not

to answer),’’ ‘‘répondre au hasard (to answer by guess-

ing),’’ with the letters m, j, f, s, h, respectively.

As far as the axioms are concerned, we have already

mentioned two: all clever people will give the right answer

to this question (A1); those who answer by guessing are

not clever (A2). These may be formalized by ‘‘Vx

(m(x) ) j(x))’’ (A1) and ‘‘Vx (h(x) ) :m(x))’’ (A2), but

other axioms are also needed. Indeed, as is generally the

case when formalizing, it is necessary to express conditions

that remain implicit in cases of informal reasoning. In this

situation, it is necessary to state that ‘‘All those who answer

the question either do not give any answer or give the right

answer or give the wrong answer (exclusive),’’ which

corresponds to four new axioms: Vx (s(x) _ j(x) _ f(x))

(A3); Vx :(j(x) ^ f(x)) (A4); Vx :(j(x) ^ s(x)) (A5); Vx

:(f(x) ^ s(x)) (A6). We have chosen to complete our sys-

tem with the assertion that ‘‘There exists at least one

person in each category,’’ giving five new axioms: Ax j(x)

(A7); Ax f(x) (A8); Ax s(x) (A9); Ax m(x) (A10); Ax h(x)

(A11).

Those who answer the question have to decide for each

of the four statements, if it is certain that they are true, or if

it is certain that they are false. However, it might occur that

it is not possible to decide in precisely these terms, in other

words, that it is neither certain that the statement is true nor

certain that it is false. Indeed, when the student responds to

the question, there will be a realization of the axiomatic

system, but before the response is provided, the realization

has not been determined, and so cannot be known. In other

words, to be certain of the truth-value of one sentence out

of A, B, C and D, it is necessary that these truth-values are

independent of the responses, which contribute to the

realization of the system. This can be the case only if either

the formula corresponding to the sentence or its negation is

a consequence of the axioms. Here, we will just treat the

cases of the two responses A and B. Sentence A ‘‘All those

who answer by guessing give a wrong answer’’ is formal-

ized by the formula U: Vx (h(x) ) f(x)), and sentence B

‘‘Those who are clever answer by guessing’’ is formalized

by the formula W: Vx (m(x) ) h(x)). A rather natural

conjecture is that, both sentences are false, although some

difference is perceptible between the two sentences. Sen-

tence A might be true, while sentence B seems to be

necessarily false. First, we prove that B is necessarily false,

which means that not B follows logically from the axioms.

For this, we provide a proof that ‘‘:W is a logical conse-

quence of T’’:

Step 1: :W is logically equivalent to Ax (m(x) ^ :
h(x)); Step 2: the axiom A1 is logically equivalent to

Vx (m(x) ) :h(x)); Step 3: we use Copi’s method of

natural deduction)12:

(1) Vx (m(x) ) :h(x)) Premise

(2) Ax m(x) Premise

(3) m(x) Existential instantiation on (2)

(4) m(x) ) :h(x) Universal instantiation on (1)

(5) :h(x) Modus Ponens on (1) and (3)

(6) m(x) ^ :h(x) Conjunction on (3) and (5)

(7) Ax (m(x) ^ :h(x)) Existential Generalization

12 The method of Copi (1954) is briefly described in the Appendix.
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This proves that :W is a logical consequence of T. As T

is consistent (T has at least one model), any model of T is a

model of :W; hence, it is certain that sentence B is false.

Now we can prove the conjecture concerning sentence

A by way of a proof by interpretation, providing two

models of the axiomatic system: a model R1 of T, which

is a model of U, and a model R2 of T, which is not a

model of U. It is clear that a model of T needs to have at

least three elements. Taking the domain K = {a, b, d},

we can define the model of T by the extension of the five

predicates, so that the interpretation of the axioms in the

model are true; we note X* the extension of the property

X that interprets x. For R1, we suppose that: J* = {a},

F* = {b}, S* = {d}, M* = J* = {a}, H1* = F* = {b},

while for R2, we suppose that: J* = {a}, F* = {b},

S* = {d}, M* = J* = {a}, H2* = S* = {d}. In R1, the

interpretation of U is true, while in R2 it is false. Indeed,

as we have H2(d) and :F(d), d is a counterexample to the

general conditional in U. Thus, neither U nor :U is a

logical consequence of T. As a consequence, those who

answer the test cannot be certain that sentence A is false.

However, if they give the answer A, they are wrong. Note

that, in French, it is possible to use the term ‘‘faux’’ either

as an adjective or as an adverb, meaning that the text of

the question has two possible meanings: ‘‘la phrase A est

fausse’’ (sentence A is false), or ‘‘répondre A est faux’’ (it

is wrong to answer A). There is a second ambiguity in

French, as the term ‘‘réponse’’ could designate the sen-

tence itself or the act of answering. Thus, the fifth

question is also ambiguous. It can be understood as ‘‘It is

certain that sentences A, B, C and D are false’’; we have

seen that it is not the case, so sentence E is false, and

consequently, none of the sentence is true, but it could

also be understood as ‘‘It is certain that answering A, B,

C or D is wrong,’’ in that case, E is true and so answering

E is right.

This example illustrates the large scope for applying the

methodology developed by Tarski. It also shows a path for

teaching it to undergraduate students, to give a concrete

signification to fundamental logical-mathematical concepts

such as truth, satisfaction, validity, axiom, model of a

theory, which are defined extrinsically for a formal system.

This contrasts with Proof theory, which is concerned only

with the study of the intrinsic property of syntactic

deductibility, and so this example makes explicit the

interplay between semantic and syntactic points of view,

which is so essential to mathematical activity.

Arriving at the end of this first part, we hope we have

managed, by means of epistemological insights, to illumi-

nate the interplay between syntax and semantics on the one

hand, and truth and validity on the other. These distinctions

are clearly described and formalized by Tarski, and now-

adays incorporated in the modern predicate logic. The

second part of this paper will be devoted to illustrating the

thesis that these epistemological considerations are rele-

vant for mathematics education, especially concerning

proof. Thus, these reflections help both in interpreting

students’ mathematical activity, and in dealing with rigor

in advanced mathematical studies.

3 Application to didactic analysis

In this part, we aim to show that the previous epistemo-

logical considerations have some important applications in

mathematics education. First, we will give evidence that

considering mathematics as an activity leads to shifting the

focus from general statements, which are the very end of

the process, to singular statements, open statements, and

hence contingent statements, dealing with mathematical

objects, properties and relationships, which are involved

throughout the process. From this perspective, it is clear

that a strictly syntactic perspective is insufficient, both for

the analysis of students’ activity in constructing proofs, and

for analyzing their written proofs. We will then show that a

semantic point of view is relevant for analyzing difficulties

in constructing proofs involving several quantifiers. In

particular, this approach is useful for analyzing proofs in

which statements of type ‘‘For all x, there exists y, such that

P(x, y)’’ are used, or are to be proved (Durand-Guerrier and

Arsac 2003, 2005).

3.1 A semantic point of view on students activity

In this section, we will try to make clear, by means of an

example, what we mean by the duality between ‘‘working

with mathematical objects and their properties’’ and

‘‘working with general statements.’’13

The example is drawn from (Arsac et al. 1992), which

consists of an analysis of mathematical situations for

teaching deductive reasoning to students of 12–13 years

old. The situation is dedicated to the two rules: ‘‘an

example that satisfies that a statement is not sufficient to

conclude that this statement is true,’’ and ‘‘a counterex-

ample is sufficient to prove that a statement is false.’’ The

problem submitted to the pupils is to know if the sentence

‘‘for every n, n2 - n + 11 is a prime number’’ is true or

not. Pupils first work alone, then in small groups; each

group writes a poster; the posters are then collectively

commented upon and there is a debate about the correct-

ness of the answers. Students must decide on the truth-

value of a general statement whose domain of quantifica-

tion is infinite. In their presentation of the situation, the

13 This example is developed in (Durand-Guerrier 2005, pp. 128–

139). Notice that we use ‘‘general statements,’’ where Jahnke (2008)

use ‘‘closed general statements.’’
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authors included a fragment of dialog between pupils

concerning the truth-value of the sentence. The students are

commenting a claiming that the sentence is true; there are

two examples and a confusion between odd and prime.

Other pupils have found the obvious counterexample 11; so

they argue that, as the sentence is not always true, it is

false, which is the answer expected by the teacher. How-

ever, some pupils, like Marie, do not want to declare that

the sentence is false:

(40) Elève: Y a une exception, donc c’est pas

toujours.

Student: there is an exception; hence it is not always.

(41) Marie: Ça a été reconnu. À part ça, c’est toujours

un nombre premier. Si on éliminait 11 ben…
Marie: That has been established. Except for this, it

is always a prime number. What if we eliminated

11…? (…)

(63) Marie: Oui mais 22, c’est le double de 11, on

peut peut-être essayer 33, à mon avis ce sera aussi

une exception.

Marie: Yes, but 22 is twice 11; we can maybe try 33; I

think that this will also be an exception.

Finally, Marie accepts the claim that the sentence is

false when another student provides the counterexample

25,

(64) Marie: je crois qu’ils ont gagné, parce qu’il y a

aussi 25 comme exception

Marie: I think they have won, because 25 is also an

exception.

The debate went on about how many exceptions are

needed to be convinced.

(76) Marie: Ça devient plus des exceptions parce que

22, 33 c’est tous des multiples.

Marie: They are no longer exceptions because 22, 33,

are all multiples.

This shows that for Marie, the argument is not the

number of counterexamples, but their relationship to the

situation. She adds that to be sure of getting a true sentence,

it is necessary to be under 100. The authors report that

asking the question anew some days later, several pupils

declare the statement is false, citing the two counterex-

amples 11 and 25.

Our interpretation is that those students who do not want

to declare that the statement is false as soon as a counter-

example is found are not considering the closed statement.

They are working with the open statement ‘‘n2 - n + 11 is

a prime number,’’ in which they substitute numerical val-

ues for n. First, as the numbers from one to ten satisfy this

relationship, it is likely that many students consider the

statement to be true. In this case, the ‘‘miraculous’’

counterexample 11 is not sufficient to change their

assessment of the truth-value. There are numbers for which

the statement obtained by substitution is true, and others

for which the statement is false. This interpretation renders

the answer given by ‘‘Geraldine’’ coherent, as she con-

cludes that it is both true and false. The group of

discussions reveals a disagreement between those students

who consider the general statement and insist on the fact

that ‘‘it is not always true, so it is false,’’ and those students

who remain focussed on the particular cases they have used

to make up their minds. According to Jahnke (2008), we

could also say that some students consider an open general

statement, while others consider a closed general state-

ment. At the end of the sequence, the teacher concludes that

in mathematics a statement is either true or false, and that a

counterexample is sufficient to prove that it is false,

without, however, adding that this concerns strictly closed

general statements. The implicit message is that in math-

ematics only closed general statements are ever involved.

In this situation, integers are familiar objects that constitute

the domain of reality in which the mathematical activity of

students occurs. This activity may lead students to make

various true assertions: the sentence is false; the sentence is

not always true; the sentence is true for all integers from

one to ten; the sentence is sometimes true, sometimes false;

the sentence might be true and false; the sentence is true

except for 11; the sentence is true except for the multiples

of 11; the sentence is false for every multiple of 11; it is

impossible to determine all the numbers for which the

sentence is true (or false)…. We may suspect that asserting

one or another of these sentences depends partly on the

actions of the students during the phase of exploration of

the problem. Of course, finding that many numbers satisfy

the sentence may incline to try to save the statement by

eliminating the counterexamples—which is a rational

posture —, while seeing immediately that 11 is a coun-

terexample may focus on the falsehood of the statement,

and may lead the student to stop the exploration, which is

a priori not so rational, because it might be that in other

situations the obvious counterexample is the only one! Of

course, the equivalence between ‘‘there exists x such that

not F(x)’’ and ‘‘not for all x, F(x)’’ is logically valid;

however, a rigid application of this rule, independently of

the mathematical context, meaning from a syntactic point

of view, is not very productive in terms of developing

mathematical abilities. In this perspective, it would be

relevant to change this kind of situation, proposing open

sentences, and asking for the largest domain for which the

sentence is true. In this case, pupils cannot give a definitive

answer, because they cannot characterize the examples and

counterexamples. Nevertheless, it would allow the teacher

to take into account the various possible postures of stu-

dents mentioned above. Moreover, in other cases, such a
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question may lead to the elaboration of one or more rele-

vant theorems.

3.2 Difficulties with multiquantified statements

Many undergraduate students face serious difficulties when

studying calculus, especially when they have to deal with

multiquantified statements (Dubinsky and Yiparaki 2000;

Selden & Selden 1995; Chellougui 2003). A wide spectrum

of difficulties concerns the case of statements of the type

‘‘for all x, there exists y, such that F(x, y)’’ where F is a

binary relation, so-called AE statements following Dubin-

sky’s nomenclature. In Durand-Guerrier and Arsac 2005,

we develop arguments based on empirical observations

showing that these difficulties are closely related to a

specific reasoning rule, that we call ‘‘the dependence rule,’’

connected with the repeated use of an AE statement. The

following incorrect proof will illustrate this point.14 We

first recall a well-known theorem.

Theorem 1 (mean-value theorem) Let us consider

two real numbers a and b such that a \ b and a real

function f defined on the closed interval [a;b]. If f is

continuous on [a;b] and differentiable on the open

interval ]a;b[, then there is a point c in the open

interval such that f ðbÞ � f ðaÞ ¼ ðb� aÞf 0ðcÞ, where

f 0ðcÞ is the first derivative of the function f at c.

The reader should note that this statement is actually an

AE statement, although the universal quantification on f is

implicit. The same remark applies to the theorem to be

proven, which is a generalization of the previous one

applied to two functions.

Theorem 2 (Cauchy’s mean-value theorem) Let us

consider two real numbers a and b where a \ b and

two real functions f and g defined on the closed

interval [a;b]. If f and g are continuous on [a;b], and

differentiable on ]a;b[, and if the first derivative g0 of

g is never equal to zero on ]a;b[, then there is a real

number c in ]a;b[, such that f 0ðcÞ
g0ðcÞ ¼

f ðbÞ�f ðaÞ
gðbÞ�gðaÞÞ.

A proof often provided by first-year science students

consists of the following deduction of Theorem 2 from

Theorem 1:

Function f satisfies the conditions for applying The-

orem 1; hence, there is a number c in ]a;b[, such

thatf 0ðcÞðb� aÞ ¼ f ðbÞ � f ðaÞ. Also, g satisfies the

conditions for applying Theorem 1; hence, there is a

number c in ]a;b[, such that g0ðcÞðb� aÞ ¼
gðbÞ � gðaÞ. As g0 is never equal to zero on ]a;b[,

then g0(c) = 0; hence, g(b) - g(a) = 0. The result

follows from the quotient of the above two equalities.

This proof is invalid; it is possible to prove it by con-

sidering two functions for which it is not possible to choose

the same number c. Note that the existence of counter

examples is not completely obvious. Indeed, considering

two polynomials with powers strictly under three, it is

always possible to choose the same number c.15 Never-

theless, the functions x2 and x3 on interval 0; 1½ � provide a

counterexample.16

We can find numerous other examples relating to the

same mistake that we could term ‘‘forgetting the depen-

dence.’’ However, this faulty argumentation may also be

interpreted as the application of an invalid rule of logic:

‘‘for all x, there exists y, such that F(x, y),’’ and ‘‘for all x,

there exists y, such that G(x, y)’’; hence, ‘‘for all x, there

exists y such that F(x, y) and G(x, y) (R). This rule can be

represented by the following formula in predicate calculus:

[(VxAy F(x, y)) ^ (VxAy G(x, y))] ) [VxAy (F(x, y) ^ G(x,

y))]. The previous example of the Cauchy mean value

theorem provides a structure, in which the interpretation of

this formula is false, that proves that it is not logically

valid.

A common mathematical practice to avoid this difficulty

is to put indices by the letters following the existential

quantifier to distinguish the two applications of the state-

ment, but this practice, used by mathematicians, has no

theoretical status, as bound variables as well as dummy

variables can be changed without changing the meaning of

the sentence. We have shown in Durand-Guerrier & Arsac

2005 that even expert mathematicians can fail to deal

effectively with this difficulty.

Although the Cauchy mean value theorem is correct and

can easily be proved using an auxiliary function, it is

obvious that no mathematician or mathematics teacher will

accept this proof as a correct one, but what about the fol-

lowing proof, encountered in a French textbook (Houzel,

1996, p. 27) addressed to first-year university students? The

theorem to prove is a classic one:

‘‘Given two functions f and g defined in a subset A of the

set of real number, and a an adherent element of A, if f(t)

and g(t) have h and k, respectively, for limits as t tends to a

remaining in A, then f + g has h + k for a limit in a.’’

The proof proposed by the author is the following one17:

14 This example is developed in French in (Durand-Guerrier and

Arsac 2003); in English in (Durand-Guerrier and Arsac 2005) and in

(Durand-Guerrier 2004).

15 For a polynomial with power one, the derivative is a constant; for a

polynomial with power two, we have 2c = b + a.
16 For functions x2 and x3 on the interval [0;1], the number c must be
1
2

and
ffiffi

1
3

q

; respectively.
17 Our translation.
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‘‘By hypothesis, for all e [ 0, there exists g[ 0 such

that t [ A and |t - a| B g imply |f(t) - h| B e and

|g(t) - k| B e; thus, we have

|f(t) + g(t) – (h + k)| = |f(t) – h + g(t) - k| B

|f(t) - h| + |g(t) – k| B 2e’’

The proof is actually elliptic, and for a novice, the first

assertion could be interpreted as the result of the applica-

tion of Rule R, which means:

Given that

‘‘for all e [ 0, there exists g[ 0, such that t [ A and

|t - a| B g imply |f(t) - h| B e’’ (1) and

‘‘for all e [ 0, there exists g[ 0, such that t [ A and

|t - a| B g imply |g(t) - k| B e’’ (2),

we deduce:

‘‘for all e [ 0, there exists g[ 0, such that t [ A and

|t - a| B g imply |f(t) - h| B e and |g(t) - k| B e.’’ (3)

As was the case for the Cauchy mean value theorem,

sentence (3) is true, but it is not a logical consequence of

premises (1) and (2); indeed, as we have shown, rule R is

not valid, but in contrast with the incorrect proof, it is

likely that some mathematicians (but not all) may consider

this second proof to be correct, for it is always possible to

find a number that holds for the two functions, while, as we

said above, it is not always possible in the first case. The

incorrect use of rule R can be found in many situations,

even in situations where it leads students to ‘‘prove’’ a false

statement. This illustrates a very important difference

between an expert and a novice in mathematics. An expert

in a mathematical field knows when it is dangerous to relax

the rigorous application of rules of inference, while novices

have to learn this at the same time as they acquire the

relevant mathematical knowledge. These two aspects of

mathematics cannot be learned separately.

4 Conclusion

Our epistemological considerations show clearly how

methods of logic that simultaneously take into account

semantic and syntactic point of view remain close both to

natural reasoning and to mathematical reasoning and proof.

These considerations open up the possibility of reconsid-

ering the widely held view that there is a difference in

nature between natural and mathematical reasoning. The

first didactic example shows that to analyze a student’s

activity, it is relevant to adopt a semantic point of view that

provides tools for interpreting the student’s answers in a

more positive manner. Thus, the semantic point of view

brings us closer to a scientific approach than a strictly

syntactic point of view. The second didactic example

shows that in advanced mathematics, logic and mathematic

are closely intertwined, inviting teachers to make more

rigorous use of the tools supplied by logic in their teaching.

Throughout the paper, we have focused on the importance

of the distinction and the relationship between truth and

validity, which is one of the central issues studied in logic

and analytic philosophy, but which is widely neglected in

mathematics education. Although, as Glaeser (1973)

claims, quantified logic might be difficult to master, we

would instead argue that the benefits it can bring to

mathematics education make this approach worthwhile.18
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Appendix

Natural deduction in predicate calculus

Natural deduction systems provide a theoretical framework

that reflects quite well the way that mathematicians reason.

These systems provide rules for the elimination and

introduction of connectors and quantifiers. The first such

system was due to Gentzen (1935, 1955), but it has since

been modified by both Quine (1950) and Copi (1954).

According to Prawitz (1965) ‘‘Because of their close cor-

respondence to procedures common in informal reasoning,

systems of natural deduction have often been used in

textbooks for pedagogical purposes.’’ (ibid. p. 103).

Besides classical rules for the introduction and elimination

of propositional connectors, we find four rules for the

elimination and introduction of quantifiers in one-place

predicate formulae, accompanied by two restriction rules

(Copi 1954, 2nd edition, 1965, pp. 79–83). In the way that

logicians generally do, Copi uses a horizontal line between

two statements to indicate a deduction (see Fig. 1). Besides

these four rules and their two restrictions, in case of two-

place (or more) predicate, it is necessary to introduce a

third restriction rule: U.G. can be applied provided that fa

contains no individual symbol introduced by E.I. (Copi

1954, 2nd edition, 1965, p. 112). As a consequence, if w

has been introduced by applying E.I. after a was introduced

by applying U.I., then U.G. cannot be applied to faw; it is

necessary first to apply E.G. By combining the introduction

and elimination of connectors and quantifiers, Copi’s sys-

tem provides rules that on one hand allow local control of

validity by analyzing deduction step by step, and on the

other hand, indicate, by paying attention to change in

logical status for letters, when global control of validity is

required.

18 On this question, see also Epp (2003).
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A more detailed presentation of this framework and an

example of the way we use it are developed in (Durand-

Guerrier 2005, pp. 163–168).
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ématiques, 23/3, 295–342.

Durand-Guerrier, V., & Arsac, G. (2005). An epistemological and

didactic study of a specific calculus reasoning rule. Educational
Studies in Mathematics, 60/2, 149–172.

Durand-Guerrier, V., & Ben Kilani, I. (2004). Négation grammaticale

versus négation logique dans l’apprentissage des mathématiques.
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1. U.I. Universal Instantiation

(x) fx

fa

(x) expresses a universal quantification corresponding  to “∀x”

a is an individual constant and fa results from fx by replacing 
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Granger, G. G. (1990). Invitation à la lecture de Wittgenstein. Aix en

Provence: Alinea.

Hanna, G. (2000). Proof, explanation and exploration, an overview.

Educational Studies in Mathematics, 44, 5–23.
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Tarski, A. (1969). Introduction à la logique. Paris-Louvain: Gauthier-

Villard.

Tarski, A. (1972). Logique, sémantique et métamathématique, Vol. 1.
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